Prediction of Essential Genes by Mining Gene Ontology Semantics

نویسندگان

  • Yu-Cheng Liu
  • Po-I Chiu
  • Hsuan-Cheng Huang
  • Vincent S. Tseng
چکیده

Essential genes are indispensable for an organism’s living. These genes are widely discussed, and many researchers proposed prediction methods that not only find essential genes but also assist pathogens discovery and drug development. However, few studies utilized the relationship between gene functions and essential genes for essential gene prediction. In this paper, we explore the topic of essential gene prediction by adopting the association rule mining technique with Gene Ontology semantic analysis. First, we proposed two features named GOARC (Gene Ontology Association Rule Confidence) and GOCBA (Gene Ontology Classification Based on Association), which are used to enhance the classifier constructed with the features commonly used in previous studies. Secondly, we use an association-based classification algorithm without rule pruning for predicting essential genes. Through experimental evaluations and semantic analysis, our methods can not only enhance the accuracy of essential gene prediction but also facilitate the understanding of the essential genes’ semantics in gene functions.

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Computational prediction of miRNAs in Nipah virus genome reveals possible interaction with human genes involved in encephalitis

Current re-emergence of Nipah virus (NiV) in India caused 11 deaths so far and many patients were kept in quarantine. A thorough study of previous outbreaks occurred in Malaysia, Bangladesh and India represents cases with high rate of fatality due to acute encephalitis. Our work involves genome analysis of NiV for prediction of miRNAs and their targeted genes in human in order to understand enc...

متن کامل

Identification and prioritization genes related to Hypercholesterolemia QTLs using gene ontology and protein interaction networks

Gene identification represents the first step to a better understanding of the physiological role of the underlying protein and disease pathways, which in turn serves as a starting point for developing therapeutic interventions. Familial hypercholesterolemia is a hereditary metabolic disorder characterized by high low-density lipoprotein cholesterol levels. Hypercholesterolemia is a quantitativ...

متن کامل

Gene regulation network fitting of genes involved in the pathophysiology of fatty liver in the mice by promoter mining

Background and Aim: Non-Alcoholic Fatty Liver Disease (NAFLD) is the major cause of chronic liver disease in developed countries. In this study, we identified the most important transcription factors and biological mechanisms affecting the incidence of fatty liver disease using the promoter region data mining. Materials and Methods In this study, at first, the marker genes associated with this...

متن کامل

RiceGeneThresher: a web-based application for mining genes underlying QTL in rice genome

RiceGeneThresher is a public online resource for mining genes underlying genome regions of interest or quantitative trait loci (QTL) in rice genome. It is a compendium of rice genomic resources consisting of genetic markers, genome annotation, expressed sequence tags (ESTs), protein domains, gene ontology, plant stress-responsive genes, metabolic pathways and prediction of protein-protein inter...

متن کامل

Genome-wide computational prediction of miRNAs in severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) revealed target genes involved in pulmonary vasculature and antiviral innate immunity

The current outbreak of severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2)in China threatened humankind worldwide. The coronaviruses contains the largest RNA genome among all other known RNA viruses, therefore the disease etiology can be understood by analyzing the genome sequence of SARS-CoV-2. In this study, we used an ab-intio based computational tool VMir to scan the complete geno...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

عنوان ژورنال:

دوره   شماره 

صفحات  -

تاریخ انتشار 2011